Kalkulator Matematik

Kalkulator Peraturan Empirikal

Kalkulator peraturan empirikal, juga dikenali sebagai "pengiraan peraturan 68 95 99", ialah alat yang membolehkan anda menentukan julat yang sama ada 1 atau 2 sisihan piawai atau 3 sisihan piawai. Kalkulator ini akan menunjukkan kepada anda julat di mana 68, 95 atau 99.7% daripada data taburan biasa, masing-masing.

Kalkulator Peraturan Empirikal

68% daripada data berada di antara
? dan ?
95% data berada di antara
? dan ?
99.7% data berada di antara
? dan ?

Isi kandungan

Apakah peraturan empirikal?
Di manakah peraturan empirikal digunakan?
Bagaimanakah Peraturan Empirikal berfungsi?
Apakah Faedah Peraturan Empirikal?

Apakah peraturan empirikal?

Peraturan empirikal, juga dikenali sebagai tiga-sigma atau peraturan 68–95-99.7, ialah peraturan statistik yang menyatakan bahawa hampir semua data untuk data taburan normal akan berada dalam tiga sisihan piawai.
Anda juga akan menemui:
  • 68% data dalam 1 sisihan piawai
  • 95% data dalam 2 sisihan piawai
  • 99.7% data dalam 3 sisihan piawai
  • Sisihan piawai menunjukkan sebaran data. Ia memberitahu betapa berbezanya data daripada purata. Semakin sempit julat data, semakin kecil nilainya.
    Taburan normal merujuk kepada taburan yang simetri di sekeliling min. Data berhampiran min adalah lebih biasa daripada data lebih jauh daripada min. Taburan normal kelihatan seperti lengkung berbentuk loceng dalam bentuk grafik.

    Di manakah peraturan empirikal digunakan?

    Peraturan ini digunakan secara meluas dalam penyelidikan empirikal. Ia boleh digunakan untuk mengira kebarangkalian bahawa sekeping data tertentu akan berlaku atau untuk meramalkan hasil apabila tidak semua data tersedia. Ia memberikan pandangan tentang ciri dan taburan populasi, tanpa perlu menguji semua orang. Ia juga boleh digunakan untuk mengenal pasti outlier, iaitu hasil yang berbeza dengan ketara daripada set data yang lain. Ini mungkin disebabkan oleh ralat percubaan.

    Bagaimanakah Peraturan Empirikal berfungsi?

    Peraturan empirikal boleh digunakan untuk meramalkan kemungkinan hasil dalam taburan normal. Contoh ini akan digunakan oleh ahli perangkaan untuk menentukan peratusan yang termasuk dalam setiap sisihan piawai. Pertimbangkan yang berikut: Sisihan piawai 3.1 adalah bersamaan dengan 10. Sisihan piawai pertama dalam contoh ini akan berjulat dari (10+3.22)= 13.2 hingga (10-3.22)= 6.8. Sisihan piawai kedua ialah antara 10 + (X 3.2 = 16.4 dan 10-(X 3.2 = 3.6), dan seterusnya.

    Apakah Faedah Peraturan Empirikal?

    Peraturan empirikal berfungsi dengan baik kerana ia adalah cara untuk meramal data. Ini benar terutamanya dengan set data yang besar dan pembolehubah yang tidak diketahui. Ini benar terutamanya dalam kewangan. Ia terpakai kepada harga saham dan indeks harga. Nilai log kadar forex juga relevan. Kesemuanya cenderung ke arah lengkung loceng atau taburan normal.

    John Cruz
    Pengarang artikel
    John Cruz
    John adalah pelajar PhD yang mempunyai minat terhadap matematik dan pendidikan. Pada masa lapang John suka pergi mendaki dan berbasikal.

    Kalkulator Peraturan Empirikal Bahasa Melayu
    Diterbitkan: Thu Jul 21 2022
    Dalam kategori Kalkulator matematik
    Tambahkan Kalkulator Peraturan Empirikal ke laman web anda sendiri

    Kalkulator matematik lain

    Kalkulator Produk Silang Vektor

    Kalkulator Segitiga 30 60 90

    Kalkulator Nilai Yang Dijangkakan

    Kalkulator Saintifik Dalam Talian

    Kalkulator Sisihan Piawai

    Kira Peratusan

    Kalkulator Pecahan

    Penukar Paun Kepada Cawan: Tepung, Gula, Susu..

    Kalkulator Lilitan Bulatan

    Kalkulator Formula Sudut Berganda

    Kalkulator Punca Matematik (kalkulator Punca Kuasa Dua)

    Kalkulator Luas Segitiga

    Kalkulator Sudut Coterminal

    Kalkulator Produk Dot

    Kalkulator Titik Tengah

    Penukar Angka Penting (kalkulator Sig Figs)

    Kalkulator Panjang Lengkungan Untuk Bulatan

    Kira Anggaran Titik

    Kalkulator Kenaikan Peratusan

    Kira Perbezaan Peratusan

    Kalkulator Interpolasi Linear

    Kalkulator Penguraian QR

    Kalkulator Transposisi Matriks

    Kalkulator Hipotenus Segitiga

    Kalkulator Trigonometri

    Kalkulator Sisi Dan Sudut Segi Tiga Kanan (kalkulator Segi Tiga)

    45 45 90 Kalkulator Segitiga (kalkulator Segi Tiga Tepat)

    Kalkulator Darab Matriks

    Kalkulator Purata

    Penjana Nombor Rawak

    Kalkulator Margin Ralat

    Sudut Antara Dua Kalkulator Vektor

    Kalkulator LCM - Kalkulator Berbilang Paling Kurang Biasa

    Kalkulator Rakaman Persegi

    Kalkulator Eksponen (kalkulator Kuasa)

    Kalkulator Baki Matematik

    Kalkulator Peraturan Tiga - Perkadaran Terus

    Kalkulator Formula Kuadratik

    Kalkulator Jumlah

    Kalkulator Perimeter

    Kalkulator Skor Z (nilai Z)

    Kalkulator Fibonacci

    Kalkulator Isipadu Kapsul

    Kalkulator Isipadu Piramid

    Kalkulator Isipadu Prisma Segi Tiga

    Kalkulator Isipadu Segi Empat Tepat

    Kalkulator Isipadu Kon

    Kalkulator Isipadu Kubus

    Kalkulator Isipadu Silinder

    Kalkulator Dilatasi Faktor Skala

    Kalkulator Indeks Kepelbagaian Shannon

    Kalkulator Teorem Bayes

    Kalkulator Antilogaritma

    Eˣ Kalkulator

    Kalkulator Nombor Perdana

    Kalkulator Pertumbuhan Eksponen

    Kalkulator Saiz Sampel

    Logaritma Songsang (log) Kalkulator

    Kalkulator Pengagihan Racun

    Kalkulator Songsang Darab

    Markah Kalkulator Peratusan

    Kalkulator Nisbah

    Kalkulator Nilai-p

    Kalkulator Isipadu Sfera

    Kalkulator NPV

    Peratusan Menurun

    Kalkulator Kawasan

    Kalkulator Kebarangkalian