Matematiniai Skaičiuotuvai

Tikimybių Skaičiuoklė

Tikimybių skaičiuoklė leidžia ištirti dviejų atskirų įvykių tikimybių ryšį. Tai leidžia geriau suprasti, kaip įvykiai yra susiję, ir todėl prognozės tampa tikslesnės.

Pavienių įvykių tikimybės

%
%

Kokią tikimybę norite matyti?

%

Įvykių serijos tikimybės

laikai
%

Turinys

Tikimybių apibrėžimas
Sąlyginė tikimybė
Teorinė vs eksperimentinė tikimybė
Tikimybė ir statistika
Tikimybių skaičiuoklė yra naudinga priemonė tiriant ryšius tarp įvykių, pvz., galimybę, kad įvyks A, ir tikimybę, kad įvyks B. Pavyzdžiui, jei tikimybė, kad A įvyks, yra 50 %, o B – tiek pat, kokia tikimybė, kad įvyks abu, įvyks tik vienas, įvyks bent vienas, ar neįvyks nė vienas ir pan.?
Mūsų tikimybių skaičiuoklė padeda pamatyti šešių skirtingų scenarijų tikimybę. Be to, kai įvesite, kiek kartų „metamas kauliukas“, pateikiami dar keturi scenarijai. Tokiu būdu jums nereikės visų skaičiavimų atlikti patiems. Tiesiog įveskite skaičius ir visa kita pasirūpins mūsų skaičiuotuvas!
  • Tikimybių supratimas: apibrėžimas ir sąvoka
  • Sąlyginė tikimybė: priklausomi ir nepriklausomi įvykiai
  • Teorinė vs eksperimentinė tikimybė
  • Tikimybių skaičiuoklės naudojimas: įėjimai ir išėjimai
  • Tikimybė ir statistika: realaus gyvenimo programos
  • Dažnos klaidos, kurių reikia vengti skaičiuojant tikimybę
  • Papildomi ištekliai ir tolesnis skaitymas
  • Išvada: kaip tikimybių skaičiuoklė gali padėti priimti geresnius sprendimus
  • Tikimybių apibrėžimas

    Tikimybė yra mąstymo apie neapibrėžtas situacijas būdas ir naudojamas įvairiose srityse, tokiose kaip azartiniai lošimai, sprendimų priėmimas ir statistika. Šiame kurse pateiktas tikimybės apibrėžimas yra pats pagrindinis ir esminis dalyko apibrėžimas.

    Sąlyginė tikimybė

    Tikimybė yra susijusi su atsitiktinumo tyrimu, o viena iš svarbiausių sąvokų, kurią reikia suprasti, yra tai, ar įvykiai yra priklausomi, ar ne. Du įvykiai yra nepriklausomi, jei pirmojo įvykis neturi įtakos antrojo įvykio tikimybei. Tai nepaprastai svarbu, nes nuo to priklauso, kaip galime apskaičiuoti galimus rezultatus. Jeigu mes metame idealiai subalansuotą standartinį kubinį kauliuką, yra 1/6 tikimybė gauti du.
    Nors šiame pavyzdyje kauliukai buvo susieti, tikimybė gauti du ⚁ antrajame posūkyje vis tiek yra 1/6, nes įvykiai yra nepriklausomi. Tai reiškia, kad tikimybė gauti bent vieną konkretų rezultatą, pavyzdžiui, du ⚁ pirmame posūkyje, nepriklauso nuo to, kas atsitiks su kauliuku antrojo ėjimo metu.
    Tikėtina, kad scenarijų galima žiūrėti įvairiais būdais. Šį kartą kalbėsime apie sąlyginę tikimybę. Tarkime, kad žaidžiate tenisą ir vienas iš jūsų priešininkų artėja prie tinklo. Priklausomai nuo kampo, kuriuo jie smūgiavo į kamuolį, gali būti įmanoma vienu smūgiu pasiųsti kamuolį pro varžovą. Tačiau, jei jų varžovas nusileidžia, kai mato ateinantį kamuolį, kamuolys greičiausiai atšoks nuo žemės ir varžovas gali jį sugauti. Tai pavyzdys situacijos, kai mąstoma apie žaidimą įvykių (kamuolio smūgio) ir rezultatų požiūriu.

    Teorinė vs eksperimentinė tikimybė

    Daugeliu atvejų teorinė tikimybė apibrėžiama kaip santykis tarp palankių rezultatų skaičiaus ir visų galimų rezultatų skaičiaus. Tačiau yra skirtumas tarp teorinės tikimybės ir eksperimentinės tikimybės. Formalus eksperimentinės tikimybės apibrėžimas yra santykis tarp rezultatų, patenkančių į konkrečią kategoriją (eksperimentas), ir bendro rezultatų skaičiaus. Eksperimento planavimas remiasi pateikta informacija, loginiais samprotavimais ir pasakojimu, ko tikėtis iš eksperimento. Idealiu atveju ši informacija bus gauta iš tikrinamos hipotezės. Surinkus šią informaciją, eksperimentinis planas padės suplanuoti eksperimentą taip, kad patvirtintų arba paneigtų jūsų hipotezę.
    Žaidime iš 42 rutuliukų atsitiktinai parenkamas vienas kamuoliukas ir be galo daug kartų įdedamas atgal į maišą. Tai reiškia, kad krepšyje visada yra 42 kamuoliukai, iš kurių 18 yra oranžinės spalvos. Galime apskaičiuoti tam tikros spalvos pasirinkimo tikimybę, padalydami tos spalvos kamuoliukų skaičių iš viso maišelyje esančių kamuoliukų skaičiaus (42). Tai supaprastinta iki 3/7 arba tikimybė yra 18/42, o tai reiškia, kad iš kiekvienų 14 paimtų kamuoliukų turėtų būti 3 oranžiniai rutuliukai.
    Tikimybė yra matematikos mokslas, nagrinėjantis tikimybę, kad kažkas nutiks. Jis gali būti naudojamas nuspėti, kas atsitiks atlikus eksperimentą, arba suprasti tikimybę, kad kažkas atsitiks tam tikroje situacijoje. Šiame pavyzdyje naudosime eksperimentinę tikimybę, kad suprastume, kas atsitiko, kai iš maišelio paėmėme marmurą ir pakartojome procedūrą dar 13 kartų. Tarkime, kad per 14 bandymų gavome 8 oranžinius kamuoliukus. Tai suteikia mums empirinę tikimybę 8 iš 14 arba 44%.
    Bus laikai, kai rinksitės daugiau kortelių, kartais gausite mažiau, o kartais – numatytą skaičių. Tačiau rezultatas skirsis nuo teorinio. Taip atsitinka todėl, kad bandydami kartoti šį žaidimą, kartais pasirinksite daugiau, o kartais gausite mažiau, o kartais pasirinksite tiksliai tokį skaičių, koks buvo numatytas teoriškai. Jei susumuosite visus rezultatus, turėtumėte pastebėti, kad bendra tikimybė vis labiau artėja prie teorinės tikimybės. Jei ne, tada gali būti neatitikimas tarp to, ką matote, ir hipotetinio rezultato – taip gali būti, pavyzdžiui, jei kai kurie kamuoliukai maiše yra skirtingų spalvų ir dydžių. Norėdami gauti tikslų įvertinimą, turėsite atsitiktine tvarka pasirinkti atrankos procesą.

    Tikimybė ir statistika

    Statistika yra matematikos šaka, susijusi su duomenų rinkimu, interpretavimu, analize, pateikimu ir interpretavimu. Tikimybė yra matematikos šaka, tirianti įvykių galimybę ir jų padarinius. Svarbu suprasti šiuos skirtumus, nes įvairiose situacijose jie gali lemti skirtingas išvadas.
    Tikimybė yra teorinė matematikos sritis, nagrinėjanti tokius dalykus kaip matematiniai apibrėžimai ir teoremos. Priešingai, statistika yra praktinis matematikos taikymas, kuriuo bandoma priskirti prasmę ir supratimą apie stebėjimus realiame pasaulyje. Statistiką galima suskirstyti į dvi pagrindines šakas – aprašomąją ir išvadinę. Aprašomoji statistika nagrinėja aprašomąsias populiacijos savybes, tokias kaip skaičius, vidurkiai ir standartiniai nuokrypiai. Išvadinėje statistikoje naudojami statistiniai metodai, leidžiantys daryti išvadas apie populiaciją iš imčių, atliktų arba iš eksperimento, arba iš stebėjimų, paimtų iš realaus pasaulio.
    Tikimybė yra galimybė numatyti įvykių galimybę, o statistika yra praeities įvykių dažnio tyrimas. Kurso pabaigoje jūs giliau suprasite šias sąvokas ir galėsite jas naudoti modeliuodami realaus pasaulio duomenis.
    Tarkime, kad žaidžiate azartinį žaidimą, kuriame kiekviena korta pasirenkama ta pačia tikimybe, o jūsų tikslas yra laimėti. Tokiu atveju galėtumėte statyti pagal koeficientą – tai yra tikimybę, kad jūsų pasirinkta korta bus kastuvas. Darant prielaidą, kad denis yra baigtas ir pasirinkimas yra visiškai atsitiktinis ir teisingas, galite daryti išvadą, kad tikimybė yra lygi ¼. Tai reiškia, kad galite drąsiai statyti.
    Statistikas kurį laiką stebės žaidimą, kad įvertintų teisingumą, prieš konsultuodamasis su tikimybininku, kokių veiksmų imtis, kad būtų didžiausia tikimybė laimėti. Sutarus, kad žaisti verta, tikimybininkas patars, kokių veiksmų imtis, kad pagerintų savo galimybes.

    John Cruz
    Straipsnio autorius
    John Cruz
    Jonas yra doktorantas, aistringas matematikai ir švietimui. Laisvalaikiu Jonas mėgsta žygius pėsčiomis ir dviračius.

    Tikimybių Skaičiuoklė Lietuvių
    Paskelbta: Sun Jan 08 2023
    Matematiniai skaičiuotuvai kategorijoje
    Pridėkite Tikimybių Skaičiuoklė prie savo svetainės

    Kiti matematiniai skaičiuotuvai

    Vektorių Kryžminių Produktų Skaičiuoklė

    30 60 90 Trikampio Skaičiuoklė

    Tikėtinos Vertės Skaičiuoklė

    Mokslinė Skaičiuoklė Internete

    Standartinio Nuokrypio Skaičiuoklė

    Procentinė Skaičiuoklė

    Trupmenų Skaičiuoklė

    Svarų Į Puodelius Konverteris: Miltai, Cukrus, Pienas..

    Apskritimo Perimetro Skaičiuoklė

    Dvigubo Kampo Formulės Skaičiuoklė

    Matematinės Šaknies Skaičiuotuvas (kvadratinės Šaknies Skaičiuotuvas)

    Trikampio Ploto Skaičiuoklė

    Coterminal Kampo Skaičiuoklė

    Taškų Produktų Skaičiuoklė

    Vidurio Taško Skaičiuoklė

    Reikšmingų Skaičių Keitiklis (Sig Figs Skaičiuoklė)

    Apskritimo Lanko Ilgio Skaičiuoklė

    Taškų Skaičiavimo Skaičiuoklė

    Procento Padidėjimo Skaičiuoklė

    Procentų Skirtumo Skaičiuoklė

    Linijinės Interpoliacijos Skaičiuoklė

    QR Skilimo Skaičiuoklė

    Matricos Perkėlimo Skaičiuoklė

    Trikampio Hipotenuzės Skaičiuotuvas

    Trigonometrijos Skaičiuotuvas

    Stačiojo Trikampio Kraštinės Ir Kampo Skaičiuotuvas (trikampio Skaičiuotuvas)

    45 45 90 Trikampio Skaičiuotuvas (stačiojo Trikampio Skaičiuotuvas)

    Matricos Daugybos Skaičiuoklė

    Vidutinis Skaičiuotuvas

    Atsitiktinių Skaičių Generatorius

    Paklaidos Skaičiuoklė

    Kampo Tarp Dviejų Vektorių Skaičiuoklė

    LCM Skaičiuoklė – Mažiausiai Paplitusi Kelių Skaičiuoklė

    Kvadratinių Metrų Skaičiuoklė

    Eksponentų Skaičiuotuvas (galios Skaičiuotuvas)

    Matematikos Likučių Skaičiuoklė

    Trijų Skaičiuoklės Taisyklė – Tiesioginė Proporcija

    Kvadratinės Formulės Skaičiuotuvas

    Sumos Skaičiuoklė

    Perimetro Skaičiuotuvas

    Z Balo Skaičiuoklė (z Reikšmė)

    Fibonačio Skaičiuoklė

    Kapsulės Tūrio Skaičiuoklė

    Piramidės Tūrio Skaičiuoklė

    Trikampės Prizmės Tūrio Skaičiuotuvas

    Stačiakampio Tūrio Skaičiuoklė

    Kūgio Tūrio Skaičiuoklė

    Kubo Tūrio Skaičiuoklė

    Cilindro Tūrio Skaičiuoklė

    Mastelio Faktoriaus Išsiplėtimo Skaičiuoklė

    Shannon Įvairovės Indekso Skaičiuoklė

    Bayes Teoremos Skaičiuotuvas

    Antilogaritmo Skaičiuoklė

    Eˣ Skaičiuoklė

    Pirminių Skaičių Skaičiuoklė

    Eksponentinio Augimo Skaičiuoklė

    Imties Dydžio Skaičiuoklė

    Atvirkštinio Logaritmo (logo) Skaičiuotuvas

    Poisson Pasiskirstymo Skaičiuoklė

    Dauginamasis Atvirkštinis Skaičiuotuvas

    Žymių Procentų Skaičiuoklė

    Santykio Skaičiuoklė

    Empirinis Taisyklių Skaičiuotuvas

    P-reikšmės Skaičiuotuvas

    Sferos Tūrio Skaičiuoklė

    NPV Skaičiuoklė

    Sumažėjimas Procentais

    Ploto Skaičiuoklė